

Journal of Organometallic Chemistry 571 (1998) 189-193

Dioxirane oxidation of substituted vinylphosphonates: a novel efficient route to 1,2-epoxyalkylphosphonates

Henri-Jean Cristau *, Xavier Yangkou Mbianda, Annabelle Geze, Yves Beziat, Marie-Bénédicte Gasc

Laboratoire de Chimie Organique ENSCM (Unité de recherche associée au CNRS, ESA 5076), 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France

Received 23 April 1998; received in revised form 6 July 1998

Abstract

A new stereoselective route to substituted 1,2-epoxyalkylphosphonates through oxidation of corresponding alk-1-enylphosphonates by 'in situ' generated ethylmethyldioxirane is described. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Dioxirane; 1,2-Epoxyphosphonate; Vinylphosphonate; Epoxidation; Oxidation

1. Introduction

Epoxyalkylphosphonates are useful intermediates in the synthesis of modified natural and synthetic polymers [1], and also in the preparation of bioactive substances [2–4]. Indeed, since the discovery in 1969 of fosfomycin 1 [3], the preparations of epoxyalkylphosphonates have received much more attention.

Since the first review by Redmore in 1971 [5], several improvements in their synthesis have been proposed. The principal routes to 1,2-epoxyalkylphosphonates include: the treatment of halohydrines with a base [5–9], the reaction of α -haloketones [5,10–12] or α -tosyl-ketones [13] with alkali metal derivatives of dialkylphosphonates, the Darzens reaction type of halomethylphosphonates with aldehydes or ketones

[5,14–18], an improved variant of Darzens reaction through sulfonio- or ammoniomethylphosphonates [19], and lastly direct epoxidation of α , β -unsaturated phosphonates with either acidic or basic oxidizing reagents [5,20–25].

In the search of synthesis of new analogs of fosfomycin 1 [26], we needed a series of different substi-1,2-epoxyalkylphosphonates tuted via the corresponding vinylphosphonates whose stereoselective synthesis was previously described [27,28]. First experiments with traditional reagents (tBuOOH/catalyst, H_2O_2/Na_2WO_4 , H_2O_2/Na_2CO_3), failed in our hands for such substrates: no trace of epoxyphosphonate was either detected, all the vinvlphosphonate was recovered at the end of the reaction. These results corroborate the observations by Sturtz et al. [21]. about the very poor reactivity of vinylphosphonates towards most of the classic epoxidation reagents.

2. Results and discussion

So we decided to oxidize the substituted alk-1enylphosphonates with dioxiranes. Indeed dioxiranes are strong oxidizing compounds [29,30], easy to handle

^{*} Corresponding author. Tel.: + 33 4 67144312; Fax: + 33 4 67144319.

and can be generated in situ from monopersulfate (caroate) and a ketone in a phase transfer system [31]. Moreover the oxidation could be enantioselective using a chiral ketone [29,31–34]. Herein we report a new and easy synthesis of substituted 1,2-epoxyalkylphosphonates 4 starting from the corresponding alk-1-enylphosphonates 2 oxidized with methyl ethyl dioxirane. We selected butanone rather than acetone (more soluble in water) as dioxirane precursor to mimic chiral unsymetrical ketones and to handle a less volatile dioxirane [35].

Owing the pH-dependence of the dioxirane stability, the reaction, followed by ³¹P-NMR, needs an accurate control of the pH at 7.4 ± 0.1 ; and, in order to balance the spontaneous decomposition of dioxirane, the addition of several fresh portions of caroate (up to a maximum of six portions) is necessary to obtain the nearly complete conversion of the starting alk-1enylphosphonate. Our first attempts were tedious, and the results not very reproducible, due to the variation of pH after addition of caroate. We improved this reaction, by automatizing the addition of caroate and the pH control. We used here a programmable apparatus with electronic comparator, which starts and stops them when the pH orders values are reached.

The results, quoted in Table 1, indicate that the ease of epoxidation depends indeed on the nature and position of the substituents on the double bond: for the 2-mono-substituted (entries **4a**, **4b**, **4c**) and the 2-*cis*alkyl or 2-*trans*-aryl 2,2-di- or trisubstituted alk-1enylphosphonates (entries **4d**, **4e**, **4f**, **4j**, **4k**), the

Table 1											
Epoxidation	of	alk-1-	envlp	hosph	onates	2	bv	methvl	ethvl	dioxir	ane

conversion rate is high, in agreement with the electrophilic character of dioxirane [36] and the good nucleophilic reactivity of the double bond owing to the electron-donating alkyl groups or the strong conjugation with the aryl groups. On the contrary, for the 2-cis-aryl-2,2-disubstituted alkyl-1-enylphosphonates (entries 4g, 4h, 4i), in which the conjugation of the double bond with the aryl group is probably weaken by the steric hindrance between the aryl and phosphonate groups, the conversion rates are low in spite of the addition of six portions of caroate.

The structure of 1,2-epoxyalkylphosphonates **4** have been established unambiguously by ¹H-, ¹³C- and ³¹P-NMR and elementary analysis (Table 2). This reaction is stereoselective and occurs with full retention of the stereochemistry. Furthermore, except in one case, we almost did not observe any by-products unlike in the other routes.

3. Conclusion

In summary, we propose a stereoselective general way to new substituted 1,2-epoxyalkylphosphonates with moderate to high yields. Corresponding enantioselective syntheses are under investigations.

4. Experimental

Unless otherwise specified, the starting materials were commercially available. IR spectra (film) were recorded using a Perkin-Elmer 377 spectrometer. The NMR spectra in Table 2 were obtained in CDCl₃ on Bruker AC-200, AC-250 (¹H-NMR at 200.13 and 250.13 MHz, ¹³C-NMR at 50.32 MHz and ³¹P-NMR at 81.0 MHz). Chemical shifts refer to signals of tetramethylsilane in the case of ¹H and ¹³C spectra (int.) and to 85% aqueous phosphoric acid (ext.) in the case of ³¹P spec-

Entry	\mathbb{R}^1	\mathbb{R}^2	R ³	No. of caroate addition	Conversion rate (%)	Yield (%) ^a
4a	nPr	Н	Н	6	80	58
4b	<i>n</i> Bu	Н	Н	6	100	71.3
4c	Ph	Н	Н	6	87	73 ^b
4d	nPr	Me	Н	6	92	75
4 e	nPr	Ph	Н	2	100	81
4f	<i>n</i> Bu	Ph	Н	2	100	80
4g	Ph	nOct	Н	6	30	19
4h	Ph	<i>n</i> Bu	Н	6	44	35
4I	Ph	<i>n</i> Bu	Me	6	28	20
4j	Ph	<i>p</i> MePh	Н	2	100	84
4k	nPr	Me	Me	4	100	79

^a Yields of isolated compounds.

^b Presence of non identified by-products.

 Table 2

 Some caracteristic data of epoxyphosphonates 4

Entry	$R_{\rm f}^{\rm a}$	³¹ P	${}^{13}C_1 J (Hz)$	${}^{13}C_2 J (Hz)$
4a ^b	0.45	19.67(s)	49.42(d) ${}^{1}J_{P-C} =$	57.4(d) ${}^{2}J_{P-C}$
			205	= 1.5
4b	0.44	19.81(s)	49.09(d) ${}^{1}J_{P-C} =$	57.72(d) ${}^{2}J_{P-C}$
			205	= 1.59
4c	0.22	17.49(s) ^c	$52.55(d) {}^{1}J_{P-C} =$	57.05(d) ${}^{2}J_{P-C}$
			205.33	= 2.2
4d ^b	0.49	19.53(s)	56.78(d) ${}^{1}J_{P-C} =$	62.88(s)
			201.7	
4e ^b	0.50	18.18(s)	58.38(d) ${}^{1}J_{\rm PC} =$	65.70(d) $^{2}J_{\rm P}$ c
			198	= 1.03
4f	0.48	18.13(s)	$58.38(d)^{-1}J_{\rm PC} =$	$65.70(d)^{-2}J_{\rm PCC}$
		(-)	198	= 1.03
4 σ	0.54	17.23(s)	$57.04(d)^{-1}J_{\rm p}$ =	$66 \ 10(d) \ ^2 J_{\rm P}$
.9	0.0	1,120(0)	202 21	= 1.52
4h	0.54	17.26(s)	$56.9(d)^{-1}I = -$	= 1.52 66 11(s)
-11	0.54	17.20(3)	$30.9(0)$ $J_{P-C} = 202.45$	00.11(3)
∕ :b	0.54	20.97(a)	202.43	66.11(a)
41	0.54	20.87(8)	$J_{P-C} = 107.20$	00.11(8)
	0.40	15.00()	197.30	(2, (0, 1), 2)
4j	0.40	15.82(s)	$60.00(d)$ $J_{P-C} =$	$62.68(d) J_{P-C}$
a h			199.2	= 1.23
4k ^o	0.61	23.54(s)	$60.56(d) {}^{1}J_{P-C} =$	65.78(d) ${}^{2}J_{P-C}$
			196	= 3.9

 $^{\rm a}$ SiO₂, AcOEt/CH₂Cl₂ (1/1), revealer: 4-(*p*-nitrobenzylpyridine) or UV.

^b The elementary microanalysis data are in agreement with the structure: $C \pm 0.43\%$; $H \pm 0.43\%$; $O \pm 0.20\%$.

^c Other signal at 17.17 ppm: by-product (10%).

tra. Abbreviations of coupling patterns are as follow: s, singlet; d, doublet; t, triplet; q, quadruplet; quint, quintuplet; m, multiplet. TLC was conducted on thin Merck silica gel sheets (0.2 mm, 60 F 250) with a mixture (1/1) of ethyl acetate and dichloromethane. The revealer is 4-(*p*-nitrobenzylpyridine) or UV.

4.1. General procedure

In a flask, fitted with a vigorous mechanical stirrer, are introduced: 4.46 mmol of alk-1-enylphosphonate, 100 ml of butanone, 100 ml of CH_2Cl_2 , phosphate buffer (prepared by dissolving 0.177 g (1.30 mmol) of KH_2PO_4 and 0.648 g (4.6 mmol) of HNa_2PO_4 in 150 ml of water) and 0.5 g (1.7 mmol) of $Bu_4N^+HSO_4^-$. A solution of aqueous caroate (25 g (77 mmol) in 100 ml H_2O) is then slowly added (over 6 h). The pH of the mixture is maintained between 7.3 and 7.5 by a solution of KOH (5%). Stirring is maintained for eighteen hours, then a new batch of aqueous caroate solution is slowly added (over 6 h) and stirred for an additional period of 18 h.

After completion, solid NaCl is added to the cloudy reaction mixture until saturation, then the organic phase is separated by decantation, and the aqueous phase is extracted with CH_2Cl_2 (4 × 100 ml). The combined organic layers are dried over MgSO₄, filtered and

then evaporated. The crude product is purified by flash chromatography on silica gel with a (1/1) mixture of ethyl acetate and dichloromethane as eluent.

4.2. Synthesis of (\pm) diethyl 1,2-epoxy-alkylphosphonates **4**

4.2.1. (\pm) Cis-diethyl 1,2-epoxy-pentylphosphonates 4a 58% yield (0.592 g; 2.67 mmol). $R_{\rm f} = 0.45$. ¹H-NMR: $\delta = 0.9$ (t, 3H, ${}^{3}J_{H-H} = 7.25$, CH₃CH₂CH₂), 1.3 (dt, 3H, ${}^{3}J_{\rm H-H} = 7.04, \; {}^{4}J_{\rm P-H} = 1.08, \; CH_{3}CH_{2}O), \; 1.43 - 1.53 \; (m,$ 2H, ${}^{3}J_{H-H} = 7.5$, CH₃CH₂CH₂), 1.8 (q, 2H, ${}^{3}J_{H-Hb} =$ 7.13, ${}^{3}J_{H-Hd} = 7.34$, $CH_{2}CH_{b}CH_{a}$), 2.9 (dd, 1H, $J_{P-H} =$ 27.23, ${}^{3}J_{\text{Ha-Hb}} = 4.54$, $CH_{b}CH_{a}P$), 3.10 (ddd, 1H, ${}^{3}J_{P-H} = 1.6,$ ${}^{3}J_{H-Hc} = 7.13,$ ${}^{3}J_{Hb-Ha} = 4.54,$ CHc₂CH_bCH_aP), 4.1 (dq, 4H, ${}^{3}J_{H-H} = 7.04,$ ${}^{3}J_{P-H} =$ ${}^{3}J_{\rm Hb-Ha} = 4.54,$ 7.09, CH₃CH₂O). ³¹P-NMR $\delta = 19.66$ (s). ¹³C-NMR: $\delta = 57.4$ (d, ${}^{2}J_{P-C} = 1.5$, CHCHP), 49.42 (d, ${}^{1}J_{P-C} =$ 205, CHCHP), 62.47 and 62.07 (2d, ${}^{2}J_{P-C} = 6.30$, CH₃CH₂O), 29.97 (d, ${}^{3}J_{P-C} = 8.0$, CH₂CHCHP), 19.37 (s, $CH_3CH_2CH_2$), 16.13 (d, ${}^{3}J_{P-C} = 5.81$, CH_3CH_2O), 13.56 (s, CH₃CH₂CH). IR (film): 2960, 2880, 1260, 1030, 795. Anal. calc. for C₉H₁₉O₄P: C 48.64, H 8.62, O 28.80. Found: C 48.45, H 9.05, O 28.87%.

4.2.2. (\pm) Cis-diethyl 1,2-epoxy-hexylphosphonate **4b**

71% yield (0.775g; 3.28 mmol). $R_{\rm f} = 0.44$. ¹H-NMR: $\delta = 0.87$ (t, 3H, ${}^{3}J_{H-H} = 7.12$, CH₃CH₂CH₂), 1.3 (t, 3H, ${}^{3}J_{\rm H-H} = 7.05,$ $CH_3CH_2O),$ 1.34 - 1.44(m, 4H. CH₃CH₂CH₂CH₂), 1.75–1.89 (m, 2H, CH₂CHCH), 2.89 (dd, 1H, ${}^{2}J_{PHa} = 27.28$, ${}^{3}J_{Hb-Ha} = 4.5$, $CH_{b}CH_{a}P$), 3.12 (ddd, 1H, ${}^{3}J_{P-Hb} = 6.37$, ${}^{3}J_{Hb-Ha} = 4.5$, ${}^{3}J_{H-Hc} =$ 7.1, CH_bCHP), 4.12 (dq, 4H, ${}^{3}J_{H-H} = 7.05$, ${}^{3}J_{P-H} =$ 7.41, CH₃CH₂O). ³¹P-NMR: $\delta = 19.81$ (s). ¹³C-NMR: $\delta = 57.72$ (d, ${}^{2}J_{P-C} = 1.59$, CHCHP), 49.09 (d, ${}^{1}J_{P-C} =$ 205, CHCHP), 62.27 (2d, ${}^{2}J_{P-C} = 6.39$, CH₃CH₂O), 27.95 (s, $CH_3CH_2CH_2$), 28.86 (d, ${}^{3}J_{P-C} = 8.1$, CH₂CHCHP), 22.27 (s, CH₃CH₂CH₂). 15.9 (d, ${}^{3}J_{P-C} =$ 5.94, CH₃CH₂O), 13.63 (s, CH₃CH₂CH₂). IR (film): 2960, 2880, 1260, 1040, 795. MS FAB (glycerol), 237 (M + 1).

4.2.3. (\pm) Cis-diethyl 1,2-epoxy-2-phenyl-ethylphos-phonate **4**c

73% yield (0.860 g; 3.36 mmol). $R_{\rm f} = 0.22$. ¹H-NMR: δ = 1.08 and 1.17 (2t, 6H, ³J_{HH} = 7.06, CH₃CH₂O), 3.30 (dd, 1H, ²J_{P-H} = 28.24, ³J_{H-H} = 4.49, CHP), 3.5– 3.66 (m, 1H, CHCHP), 3.70–3.98 (m, 4H, CH₃CH₂O), 7.25–7.52 (m, 5H aromatic). ³¹P-NMR: δ 17.49 (82%) (s), 17.17 (10%) (s) (by-product), 1.32 (8%) (s) (byproduct). ¹³C-NMR: δ = 133.03 (d, ³J_{P-C} = 1, C_{ipso}), 128.01 (s, C_{para}), 127.74 (s, C_{meta}), 126.52 (s, C_{ortho}), 57.05 (d, ²J_{P-C} = 2.2, CHCHP), 52.55 (d, ¹J_{P-C} = 205.33, CHCHP), 61.98 and 62.19 (2d, ²J_{P-C} = 6.3, CH₃CH₂O), 15.96 and 16.08 (2d, 2C ³J_{P-C} = 2.35, CH₃CH₂O). IR (film): 2970, 2800, 1600, 1230, 1025, 680.

4.2.4. (\pm) -(u)-Diethyl 1,2-epoxy-2-methyl-pentylphosphonate **4d**

75% yield (0.815 g; 3.45 mmol). $R_{\rm f} = 0.49$. ¹H-NMR: $\delta = 0.88$ (t, 3H, ³ $J_{\rm H-H} = 7.26$, $CH_3CH_2CH_2$), 1.26 (t, 6H, ³ $J_{\rm H-H} = 7.12$, CH_3CH_2O), 1.29 (s, 3H, $C_3H_7(CH_3)C$), 1.39–1.51 (m, 2H, $CH_3CH_2CH_2$), 1.8 (quint, 2H, ³ $J_{\rm H-}$ H = 6.92, ⁴ $J_{\rm P-H} = 2.26$, CH_2CCH), 2.70 (d, 1H, ² $J_{\rm P-H} = 26.60$, CCHP), 4.07 (dq, 4H, ³ $J_{\rm H-H} = 7.12$, ³ $J_{\rm P-H} = 7.04$, CH₃CH₂O). ³¹P-NMR: $\delta = 19.53$ (s). ¹³C-NMR: $\delta = 62.88$ (s, CCHP), 56.78 (d, ¹ $J_{\rm P-C} = 201.7$, CCHP), 62.57 and 62.03 (2d, ² $J_{\rm P-C} = 6.35$, CH₃CH₂O), 34.84 (s, CH₃CH₂CH₂), 22.18 (d, ³ $J_{\rm P-C} = 5.54$, CH₃CH₂O) 14.01(s, CH₃CH₂CH₂). IR (film): 2960, 2930, 2870, 1250, 1060, 830, 790. MS FAB (NBA), 237 (M + 1); Anal. calc. for C₁₀H₂₁O₄P: C 50.84, H 8.96, O 27.09. Found: C 50.82, H 8.92, O 26.89%.

4.2.5. (\pm) -(l)-Diethyl 1,2-epoxy-2-phenyl-pentylphosphonate **4**e

81% yield (1.11 g; 3.72 mmol). $R_{\rm f} = 0.5$. ¹H NMR: δ = 0.87 (t, 3H, ³ $J_{\rm H-H} = 7.28$, $CH_3CH_2CH_2$), 1.25–1.45 (m, 8H, CH₃C H_2 CH₂ and C H_3CH_2 O), 2.1–2.4 (m, 2H, CH₃ CH₂C H_2 C), 2.8 (d, 1H, ¹ $J_{\rm P-H} = 27.73$, CH₂CCHP), 4.10–4.30 (m, 4H, CH₃C H_2 O), 7.30–7.45 (m, 5H aromatic). ³¹P-NMR: δ = 18.18 (s). ¹³C-NMR: δ = 139 (d, ³ $J_{\rm P-C} = 0.57$, C_{ipso}), 128.20 (s, C_{para}), 127.57–125.5 (C_{ortho} , C_{meta}), 65.7 (d, ² $J_{\rm P-C} = 1.03$, CCHP), 62.64 and 62.13 (2d, ² $J_{\rm P-C} = 6.25$, CH₃CH₂O), 58.38 (d, ¹ $J_{\rm P-C} =$ 198, CCHP), 33.34 (s, CH₂CC), 18.57 (s, CH₃CH₂CH₂), 16.25 (d, ³ $J_{\rm P-C} = 6.5$, CH₃CH₂O), 13.6 (s, CH₃CH₂CH₂), IR (film): 2960, 2920, 2875, 1390–1450, 1260, 1025. Anal. calc. for C₁₅H₂₃O₄P: C 60.39, H 7.77, O 21.45. Found: C 60.54, H 7.78, O 21.53%.

4.2.6. (\pm) -(l)-Diethyl 1,2-epoxy-2-phenyl-hexylphosphonate **4**f

80% yield (1.15 g; 3.68 mmol). $R_{\rm f} = 0.48$. ¹H-NMR: $\delta = 0.87$ (t, 3H, ³ $J_{\rm H-H} = 7.28$, $CH_3CH_2CH_2$), 1.20–1.38 (m, 10H, CH₃CH₂CH₂CH₂ and CH₃CH₂O), 2.11–2.45 (m, 2H, CH₃CH₂CH₂CH₂C), 2.88 (d, 1H, ¹ $J_{\rm P-H} = 27.75$, CH₂CCHP), 4.1–4.35 (m, 4H, CH₃CH₂O), 7.30–7.45 (m, 5H aromatic). ³¹P-NMR $\delta = 18.13$ (s). ¹³C-NMR: δ 139 (d, ³ $J_{\rm P-C} = 0.57$, C_{ipso}), 128.21 (s, C_{para}), 127.57 and 125.5 (C_{ortho}, C_{meta}), 65.7 (d, ² $J_{\rm P-C} = 1.07$, CCHP), 62.61 and 62.13 (2d, ² $J_{\rm P-C} = 6.25$, CH₃CH₂O), 58.38 (d, ¹ $J_{\rm P-C} = 198$, CCHP), 33.34 (s, CH₂CCP), 18.57 (s, CH₃CH₂CH₂O), 17.22 (s, CH₃CH₂CH₂), 16.25 (d, ³ $J_{\rm P-C} = 6.5$, CH₃CH₂O), 13.6 (s, CH₃CH₂CH₂). IR (film): 2960, 2920, 2875, 1450, 1390, 1260, 1025.

4.2.7. (\pm) -(u)-Diethyl 1,2-epoxy-2-phenyl-decylphosphonate 4g

19% yield (0.322 g; 0.087 mmol). $R_{\rm f} = 0.54$. ¹H-NMR: $\delta = 0.81$ (t, 3H, ³ $J_{\rm H-H} = 7.3$, $CH_3CH_2CH_2$), 0.80–0.98 (m, 6H, CH_3CH_2O), 1.15–1.33 (m, 12H, $CH_3(CH_2)_6$), 1.5–1.7 (m, 1H, CH₃(CH₂)₆CH₂), 1.9–2.2 (m, 1H, CH₃(CH₂)₆CH₂), 3.15 (d, 1H, ${}^{2}J_{P-H} = 27.98$, CCHP), 3.30 (dq, 1H, $J_{P-H} = 9.06$, $J_{H-H} = 7.03$, CH₃CH₂O), 3.65 (dq, 1H, $J_{P-H} = 10.26$, $J_{H-H} = 7.2$ CH₃CH₂O), 3.86–3.98 (m, 2H, CH₃CH₂O), 7.23–7.40 (m, 5H aromatic). ³¹P-NMR: $\delta = 17.23$ (s). ¹³C-NMR: $\delta = 136.6$ (d, ${}^{3}J_{P-C} = 0.47$, C_{*ipso*}), 127.6, 127.48 and 126.94 (C_{ortho}, C_{meta} C_{para}), 66.1 (d, ${}^{2}J_{P-C} = 1.52$, CCHP), 61.9 (d, ${}^{2}J_{P-C} = 6.55$, CH₃CH₂O), 57.04 (d, ${}^{1}J_{P-C} = 202.21$, CCHP), 38.88 (s, CH₂CCHP), 31.56 (s, CH₂CH₂CH₂C), 28.92, 29.13 and 29.15 (s, CH₃CH₂CH₂CH), 15.9 (2d, ${}^{3}J_{P-C} = 6.35$, CH₃CH₂O), 13.59 (s, CH₃CH₂CH₂).

4.2.8. (\pm) -(u)-Diethyl 1,2-epoxy-2-phenyl-2-hexyl-phosphonate **4**h

35% yield (0.487 g; 1.561 mmol). $R_{\rm f} = 0.54$. ¹H-NMR: $\delta = 0.82$ (t, 3H, ³ $J_{\rm H-H} = 6.86$, $CH_3CH_2CH_2$), 0.99 (t, 3H, ³ $J_{\rm H-H} = 7.09$, CH_3CH_2O), 1.16 (t, 3H, ³ $J_{\rm H-H} = 7.05$, CH_3CH_2O), 1.15–1.34 (m, 4H, $CH_3(CH_2)_2CH_2$), 1.5– 1.71 (m, 1H, $CH_3(CH_2)_2CH_2$), 1.9–2.2 (m, 1H, $CH_3(CH_2)_2CH_2$), 3.19 (1H, ² $J_{\rm P-H} = 28.0$, CCHP), 3.24– 3.37 (m, 1H, CH_3CH_2O), 3.62–3.71 (m, 1H, CH_3CH_2O), 3.92–4.01 (m, 2H, CH_3CH_2O), 7.26–7.43 (m, 5H aromatic). ³¹P NMR $\delta = 17.26$ (s). ¹³C-NMR: $\delta = 136.54$ (s, C_{ipso}), 127.60, 127.49 and 126.90 (C_{ortho} , C_{meta} C_{para}), 66.11 (s, CC(H)P), 56.9 (d, ¹ $J_{\rm P-C} = 202.45$, CCHP), 62.0 (2d, ² $J_{\rm P-C} = 0.13$, CH_3CH_2O), 38.58 (s, CH_2CCHP), 26.39 (s, $CH_2CH_2CH_2C$), 22.26 (s, $CH_3CH_2CH_2$), 15.95 (s, CH_3CH_2O), 13.64 (s, $CH_3CH_2CH_2$). IR (film): 3000, 2900, 1240, 1027–1052, 800.

4.2.9. (\pm) -(u)-Diethyl 1,2-epoxy-1-methyl-2-phenylhexylphosphonate **4***i*

20% yield (0.300 g; 0.92 mmol). $R_{\rm f} = 0.54$. ¹H-NMR: $\delta = 0.81$ (t, 3H, ${}^{3}J_{H-H} = 6.9$, CH₃CH₂CH₂), 0.99 (t, 3H, ${}^{3}J_{H-H} = 7.09, CH_{3}CH_{2}O), 1.14 (t, 3H, {}^{3}J_{H-H} = 7.09,$ CH_3CH_2O), 1.15–1.26 (m, 4H, $CH_3(CH_2)_2CH_2$), 1.71 (d, 3H, ${}^{3}J_{P-H} = 11.5$, C(CH₃)P), 3.26–3.36 (m, 1H, CH₃CH₂O), 3.62–3.74 (m, 1H, CH₃CH₂O), 3.90–3.99 (m, 2H, CH₃CH₂O), 7.28–7.39 (m, 5H aromatic). ³¹P NMR $\delta = 20.87$ (s). ¹³C-NMR: $\delta = 138.75$ (s, C_{ipso}), 127.20, 127.25 and 127.49 (Cortho, Cmeta Cpara), 69.11 (s, $CC(CH_3)P$), 62.21 (d, ${}^{1}J_{P-C} = 197.3$, $CC(CH_3)P$, 61.91 and 62.16 (2d, ${}^{2}J_{P-C} = 0.14$, CH₃CH₂O), 35.1 (s, CH₂CCHP), 26.8 (s, CH₂CH₂CH₂C), 22.72 (s, $CH_3CH_2CH_2$), 16.17 (s, CH_3CH_2O), 15.56 (d, ${}^2J_{P-C} =$ 0.31 C(CH₃)P), 13.8 (s, CH₃CH₂CH₂). IR (film): 3000, 2900, 1240, 1027-1052, 800. MS FAB (NBA), 327 (M + 1). Anal. calc for $C_{17}H_{27}O_4P$: C 62.56, H 8.34, O 19.61. Found: C 62.13, H 8.21, O 19.81%.

4.2.10. (\pm) -(l)-Diethyl 1-2-epoxy-2-phenyl-2-p-tolylethylphosphonate 4j

84% yield (1.34 g; 3.86 mmol). $R_{\rm f} = 0.40$. ¹H-NMR: δ 1.02 (t, 3H, ³ $J_{\rm H-H} = 7.0$, CH₃CH₂O), 1.23 (t, 3H, ³ $J_{\rm H-H}$ = 7.05, CH₃CH₂O), 2.29 (s, 3H, CH₃C₆H₄), 3.48 (d, 1H, ${}^{2}J_{P-H}$ = 28.21, CCHP), 3.42–3.56 (m, 1H, CH₃CH₂O), 3.79–3.97 (m, 1H, CH₃CH₂O), 3.99–4.09 (m, 2H, CH₃CH₂O), 7.07–7.58 (m, 9H aromatic). ³¹P-NMR δ = 15.82 (s). ¹³C-NMR: δ 138 (s, C_{ipso}), 136.68 (C'_{para}), 136.12 (C'_{ipso}), 126.37, 127.81, 127.98 128.08 and 128.98 (C_{meta}, C_{ortho}, C_{para}, C'_{meta}, C'_{ortho}), 62.68 (d, ²J_{P-C} = 1.23, CCHP), 62.28 and 62.37 (2d, ²J_{P-C} = 6.75 and 6.53, CH₃CH₂O), 60 (d, ¹J_{P-C} = 199.2, CCHP), 20.95 (s, *p*CH₃C₆H₄), 16.02 and 16.16 (2d, ³J_{P-C} = 6.2 and 6.01, CH₃CH₂O). IR (film): 2980, 2910, 1490, 1250 (PO), 1027–1052, 800.

4.2.11. (\pm) -(u)-Diethyl-1,2-dimethyl-pentylphosphonate **4**h

79% yield (0.910 g; 3.62 mmol). $R_{\rm f} = 0.61$. ¹H-NMR: $\delta = 0.94$ (t, 3H, ³ $J_{\rm H-H} = 7.36$, $CH_3CH_2CH_2$), 1.33 and 1.35 (2t, 6H, ³ $J_{\rm H-H} = 5.96$ and 7.08, CH_3CH_2O), 1.34 (d, ³ $J_{\rm P-H} = 2.49$, $C_3H_7(CH_3)C$), 1.46 (d, ³ $J_{\rm P-H} = 11.24$, $C(CH_3)P$), 1.5 (q, 2H, ³ $J_{\rm H-H} = 7.4$, $CH_3CH_2CH_2$), 4.07–4.24(m, 4H, CH_3CH_2O). ³¹P-NMR: $\delta = 25.57$ (s). ¹³C-NMR: $\delta = 65.78$ (d, ² $J_{\rm P-C} = 3.9$, CCP), 62.10 and 62.65 (2d, ² $J_{\rm P-C} = 6.79$, CH_3CH_2O), 60.56 (d, ¹ $J_{\rm P-C} =$ 196, CCP), 36.47 (s, $CH_3CH_2CH_2$), 19.05 (s, $CH_3CH_2CH_2$), 18.99 (s, CH_3CC), 16.54 (d, ² $J_{\rm P-C} =$ 15.12, $CC(CH_3)P$), 16.38 (d, ³ $J_{\rm P-C} = 2.85$, CH_3CH_2O), 14.07 (s, $CH_3CH_2CH_2$). IR (film): 2997, 2930, 2870, 1245, 1026–1051, 870, 830. MS FAB (glycerol-thioglycerol), 251 (M + 1). Anal. calc. for $C_{11}H_{23}O_4P$: C 52.79, H 9.26, O 25.57. Found: C 52.68, H 9.04, O 25.41%.

Acknowledgements

We thank the Roussel-Uclaf company for the generous gift of the laboratory automaton (Logilab system).

References

- See for example: H.N. Beck, D.C. Mac Williams, (Dow Chemical Co.); US Pat. 4, 692, 355; Chem. Abs. 107 238808x.
- [2] See for example: J. Courregelongue, D. Frehel, J.-P. Maffrand, R. Paul, I. Rico, Fr. Pat. 2, 596, 393, Chem. Abs. 108, 94780c.

- [3] D. Hendlin, E. Stapley, M. Jackson, et al., Sciences 166 (1969) 122.
- [4] B.G. Christensen, W.J. Leanza, T.R. Beattie, et al., Sciences 166 (1969) 123.
- [5] D. Redmore, Chem. Rev. 71 (1971) 315.
- [6] G. Sturtz, A. Pondaven-Raphalen, Phosphorus Sulfur 20 (1984) 35.
- [7] N.N. Girotra, N.L. Wendler, Tetrahedron Lett. (1969) 4647.
- [8] C. Giordano, C. Graziano, J. Org. Chem 54 (1989) 1470.
- [9] E. Bandini, F. Martinelli, G. Spinta, M. Panunzio, Tetrahedron Assymetry (1995) 2127.
- [10] G. Sturtz, Bull. Soc. Chim. Fr. (1964) 2333.
- [11] K. Kossev, K. Troev, D.M. Roundhill, Phosphorus Sulfur Silicon 83 (1993) 1.
- [12] P. Haake, B. Springs, J. Org. Chem. 41 (1976) 1165.
- [13] S. Inokawa, M. Yamamoto, Phosphorus Sulfur 16 (1983) 79.
- [14] P. Coutrot, P. Savignac, Synthesis (1978) 34.
- [15] P. Pierrot, J. Villieras, J.F. Normant, Synthesis (1978) 33.
- [16] K. Lee, W.S. Shin, D.Y. Oh, Synth. Commun. 22 (1992) 649.
- [17] V.F. Martrinov, V.E. Timofeev, Zh. Obsch. Khim. 34 (1964) 3890.
- [18] A. Ulman, M. Sprecher, J. Org. Chem. 44 (1979) 3703.
- [19] B.G. Christensen, R.A. Firestone, RA Ger. Offen. (1969) 1,924,135; Chem. Abs. 72 (1970) 43870.
- [20] K. Hunger, Chem. Ber. 101 (1968) 3530.
- [21] G. Sturtz, A. Pondaven-Raphalen, Bull. Soc. Chim. Fr. (1983) 125.
- [22] E. Ohler, M. El-Baldawi, E. Zbiral, Synthesis (1991) 357.
- [23] E.J. Glamkowski, G. Gal, R. Purick, A.J. Davidson, M. Sletzinger, J. Org. Chem. 35 (1970) 3510.
- [24] E. Ohler, E. Zbiral, Synthesis (1991) 357.
- [25] C.E. Griffin, S.K. Kundu, J. Org. Chem. 34 (1969) 1532.
- [26] X. Yangkou Mbianda, Ph. D. Thesis, University of Montpellier II, 1995.
- [27] H.J. Cristau, M.B. Gasc, X. Yangkou Mbianda, J. Organomet. Chem. 474 (1994) C14.
- [28] H.J. Cristau, H.X. Yangkou Mbianda, Y. Beziat, M.B. Gasc, J. Organomet. Chem. 529 (1997) 301.
- [29] R.W. Muray, Chem. Rev. 89 (1989) 1187.
- [30] W. Adam, R. Curci, J.O. Edwards, Acc. Chem. Res. 22 (1989) 205.
- [31] W. Adam, L. Hadjiarapoglou, A. Smez, Chem. Ber. 124 (1991) 227.
- [32] R. Curci, M. Fiorentino, M.R. Serio, J. Chem. Soc. Chem. Commun. (1984) 155.
- [33] D. Yang, X-C. Wang, M-K. Wong, Y-C. Yip, M-W. Tang, J. Am. Chem. Soc. 118 (1996) 11311.
- [34] Z-X. Wang, Y. Tu, M. Frohn, Y. Shi, J. Org. Chem. 62 (1997) 2328.
- [35] In: Org. Synth., Shinkai vol. 74 (1996) 91.
- [36] W. Adam, L. Hadjiarapoglou, in: Topics in Current Chemistry, vol. 164, Springer-Verlag, Berlin, 1993, p. 46 and references herein.